Our MAP solutions guarantee certified safety for your packaging process. Keyword: HACCP

DOES YOUR PROCESS INVOLVE MODIFIED ATMOSPHERE PACKAGING (MAP)?

FRIEDRICH HILLEBRAND, REGIONAL SALES MANAGER – WITT-GASETECHNIK
MEAT AND SAUSAGE PRODUCTS

<table>
<thead>
<tr>
<th>Shelf life</th>
<th>in air</th>
<th>with MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw red meat</td>
<td>2–4 days</td>
<td>5–8 days</td>
</tr>
<tr>
<td>Raw poultry</td>
<td>4–7 days</td>
<td>16–21 days</td>
</tr>
<tr>
<td>Sausages</td>
<td>2–4 days</td>
<td>2–5 weeks</td>
</tr>
<tr>
<td>Sliced cooked meat</td>
<td>2–4 days</td>
<td>2–5 weeks</td>
</tr>
<tr>
<td>Cooked, smoked and refined poultry products</td>
<td>5–10 days</td>
<td>7–21 days</td>
</tr>
</tbody>
</table>

Meat and sausage products are highly susceptible to spoilage from microbial growth. As this growth is enhanced by high moisture and nutrient content, raw meat is especially prone to spoilage. No matter whether beef, pork or poultry, spoilage begins from the moment of slaughter and continues throughout the butchering process. Besides stringent hygiene standards and continuous cooling, modified atmospheres can significantly extend the shelf life of meat and sausage products – with CO₂ as the most important among the protective gases. At concentrations above 20%, CO₂ can considerably reduce microbial growth.

In the case of red meat, there is also the risk of oxidation of the red pigments. The meat will lose its color, becoming gray and unappetizing in appearance. This is especially true with beef. To combat this problem, a high oxygen concentration in protective gas packaging can prevent oxidation. In addition, a very low carbon monoxide concentration (approx. 0.5%) can further help to retain the red color. The use of this gas in food packaging, however, is prohibited in the EU and some other regions.

Poultry is particularly sensitive to rapid spoilage and, therefore, subject to stricter cooling requirements. Here, too, a modified atmosphere with CO₂ will extend the shelf life. A high oxygen concentration is also used for poultry without skin in order to retain the color of the meat. As CO₂ can be partially absorbed by food, nitrogen is added as a supporting gas to prevent the packaging from collapsing. Sausage and meat products, e.g. marinated or smoked meat, react differently depending on the preparation. While shelf life is inherently longer than that of raw meat, it can also be positively influenced with protective gases. The CO₂ concentration should not exceed recommended limits with these products, however, or a sour taste may occur.

Gas mixture composition in % (examples)

<table>
<thead>
<tr>
<th></th>
<th>O₂</th>
<th>CO₂</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw red meat</td>
<td>70</td>
<td>20–30</td>
<td>0–10</td>
</tr>
<tr>
<td>Raw entrails</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Raw poultry with skin</td>
<td>0</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>Raw poultry without skin</td>
<td>70</td>
<td>20–30</td>
<td>0–10</td>
</tr>
<tr>
<td>Cooked meat and sausage products</td>
<td>0</td>
<td>20–30</td>
<td>70–80</td>
</tr>
</tbody>
</table>
Fish and seafood are some of the most sensitive foods. They are at risk of rapidly declining in quality and spoiling, even shortly after the catch. The reason for this lies in seafood’s neutral pH value – an ideal precondition for microorganisms, as well as special enzymes that negatively affect taste and odor. Fish, which is rich in fatty acids, also becomes rancid quickly.

The most important element for a longer shelf life is cooling close to 32°F, but modified atmospheres with at least 20% CO2 also slow the growth of bacteria, and CO2 concentrations around 50% are frequently used. As with other foods, higher levels of CO2 can lead to undesirable side effects, such as liquid loss or a sour taste.

In the case of low-fat fish and shellfish, oxygen is also used in the packaging. This prevents a fading or loss of color, while simultaneously serving as a growth inhibitor for some types of bacteria.

When dealing with shellfish and crustaceans, special attention should be paid to ensuring a CO2 concentration that is not too high. As these products absorb the most CO2, there’s a greater risk of sour taste. In addition, there’s a greater risk of package collapse. However, using nitrogen as an inert supporting gas prevents this effect.

Cheese is predominantly spoiled by microbial growth or rancidness. While a continuous cooling chain extends the shelf life, in the case of hard cheese, there is a risk of mold formation upon contact with oxygen. As a result, vacuum packaging was frequently used in the past, even though this type of packaging is awkward to open and can leave unattractive marks on the product. Modified atmosphere packaging with CO2, on the other hand, effectively prevents mold formation – without the undesirable effects of vacuum packaging – but does not otherwise affect the maturation of the cheese.

Soft cheese can quickly become rancid. While this problem can also be tackled with CO2, soft cheese absorbs this gas at a greater rate than other types of cheese, resulting in a risk of sour taste and package collapse. Therefore, a lower CO2 and higher nitrogen concentration should be used.

Likewise, dairy products such as yogurt and cream can absorb too much CO2 and become sour; these products should be packaged with an even lower concentration of CO2.

Powdered milk, frequently used in baby formula, is a highly sensitive product. It is especially important to ensure that oxygen is displaced from the packaging in order to extend the shelf life. In practice, packaging is carried out in pure nitrogen with as low a residual oxygen content as possible.

FISH AND SEAFOOD PRODUCTS

<table>
<thead>
<tr>
<th>Shelf life</th>
<th>in air</th>
<th>with MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw low-fat fish and crustaceans</td>
<td>2–4 days</td>
<td>4–9 days</td>
</tr>
<tr>
<td>Raw high-fat fish and crustaceans</td>
<td>2–3 days</td>
<td>4–6 days</td>
</tr>
<tr>
<td>Cooked fish</td>
<td>2–4 days</td>
<td>3–4 weeks</td>
</tr>
<tr>
<td>Smoked and refined fish and seafood products</td>
<td>5–10 days</td>
<td>7–21 days</td>
</tr>
</tbody>
</table>

Gas mixture composition in %
(examples)

<table>
<thead>
<tr>
<th>O2</th>
<th>CO2</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw low-fat fish</td>
<td>20–30</td>
<td>40–60</td>
</tr>
<tr>
<td>Raw high-fat fish</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Shellfish and crustaceans</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Cooked/Smoked fish</td>
<td>0</td>
<td>30–60</td>
</tr>
</tbody>
</table>

DAIRY PRODUCTS

<table>
<thead>
<tr>
<th>Shelf life</th>
<th>in air</th>
<th>with MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butter, yoghurt, cream etc.</td>
<td>1–4 weeks</td>
<td>2–12 weeks</td>
</tr>
<tr>
<td>Hard cheese</td>
<td>2–3 weeks</td>
<td>4–10 weeks</td>
</tr>
<tr>
<td>Soft cheese</td>
<td>4–14 days</td>
<td>1–3 weeks</td>
</tr>
<tr>
<td>Milk powder</td>
<td>4–8 months</td>
<td>1–2 years</td>
</tr>
</tbody>
</table>

Gas mixture composition in %
(examples)

<table>
<thead>
<tr>
<th>O2</th>
<th>CO2</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard cheese</td>
<td>0</td>
<td>30–100</td>
</tr>
<tr>
<td>Soft cheese</td>
<td>0</td>
<td>10–40</td>
</tr>
<tr>
<td>Sliced cheese</td>
<td>0</td>
<td>30–40</td>
</tr>
<tr>
<td>Cream cheese</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Yoghurt</td>
<td>0</td>
<td>0–30</td>
</tr>
<tr>
<td>Milk powder</td>
<td>0</td>
<td>0–20</td>
</tr>
</tbody>
</table>
BREAD AND CAKE

The shelf life of bread, cake and cookies is primarily affected by mold formation. Although a high standard of hygiene during production and packaging can significantly minimize this risk, using a modified atmosphere with CO₂ (and without oxygen) minimizes the risk considerably further, greatly extending the shelf life. Because these products may absorb CO₂, nitrogen is often included as a supporting gas to prevent package collapse.

<table>
<thead>
<tr>
<th>Product</th>
<th>Shelf Life in Air</th>
<th>Shelf Life with MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread</td>
<td>some days</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Pre-baked bread</td>
<td>5 days</td>
<td>20 days</td>
</tr>
<tr>
<td>Cakes</td>
<td>several weeks</td>
<td>up to one year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas mixture composition in % (examples)</th>
<th>O₂</th>
<th>CO₂</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crispy breads</td>
<td>0</td>
<td>50–100</td>
<td>0–50</td>
</tr>
<tr>
<td>Cakes, biscuits</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

FRUIT AND VEGETABLES

Modified atmosphere packaging makes it possible to offer consumers fresh and untreated products – in other words, succulent fruit and vegetables – with a long shelf life. At the same time, fruit and vegetables are subject to unique requirements regarding the nature of the packaging and atmosphere. In contrast to other types of food, fruit and vegetables continue breathing after the harvest and, consequently, require an oxygen concentration in the packaging. Furthermore, the packaging film doesn’t have to be airtight. By taking the product’s respiration and the permeability of the film (typically via micro-perforation) into account, the ideal composition of CO₂, nitrogen and low amounts of oxygen can be maintained. The term used here is EMA – equilibrium modified atmosphere. The gas composition is individually adapted to the corresponding product. Thorough cleaning and hygienic processing are the fundamental preconditions for long-lasting freshness. Modified atmospheres, in conjunction with cooling, can be used to extend the shelf life of fresh produce while achieving an attractive packaging design at the point of sale.

<table>
<thead>
<tr>
<th>Product</th>
<th>Shelf Life in Air</th>
<th>Shelf Life with MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh cut salad or fruit</td>
<td>2–5 days</td>
<td>5–10 days</td>
</tr>
<tr>
<td>Cooked vegetables</td>
<td>3–14 days</td>
<td>7–21 days</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas mixture composition in % (examples)</th>
<th>O₂</th>
<th>CO₂</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh fruit and vegetables</td>
<td>3–10</td>
<td>3–10</td>
<td>80–90</td>
</tr>
<tr>
<td>Cooked vegetables</td>
<td>0</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>
PASTA AND READY-MADE MEALS

<table>
<thead>
<tr>
<th>Shelf life</th>
<th>in air</th>
<th>with MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh pasta</td>
<td>1–2 weeks</td>
<td>3–4 weeks</td>
</tr>
<tr>
<td>Pizza</td>
<td>7–10 days</td>
<td>2–4 weeks</td>
</tr>
<tr>
<td>Convenience foods</td>
<td>2–5 days</td>
<td>7–20 days</td>
</tr>
<tr>
<td>Combination products</td>
<td>2–7 days</td>
<td>3–21 days</td>
</tr>
<tr>
<td>(sandwiches, pies, meat and fish in batter, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chilled fruit and vegetable juices</td>
<td>1 week</td>
<td>2–3 weeks</td>
</tr>
</tbody>
</table>

The nature and composition of fresh pasta and, in particular, ready-made meals vary greatly. Products such as ready-made pizzas or sandwiches contain many different ingredients with a variety of shelf lives and spoilage properties. In the majority of cases, modified atmospheres can significantly extend the shelf life without using oxygen. Mixtures of CO₂ and nitrogen are used with the concentration of gases adjusted to the content of the product. If, for example, there is a risk that large volumes of CO₂ will be absorbed by the product, the nitrogen concentration should be increased to prevent the packaging from collapsing.

SNACKS AND NUTS

<table>
<thead>
<tr>
<th>Shelf life</th>
<th>in air</th>
<th>with MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dried foods (snacks, coffee, dried milk, herbs, etc.)</td>
<td>4–8 months</td>
<td>1–2 years</td>
</tr>
</tbody>
</table>

Snack products containing fats, for example, potato chips or peanuts, are at increased risk of oxidation, whereby the products can quickly become rancid if the packaging is not optimal. To extend the shelf life, it is critical that contact with oxygen is minimized. In this case, modified atmospheres with 100% nitrogen are frequently used. Not only does this prevent premature spoilage, the nitrogen atmosphere also provides protection from mechanical damage to sensitive products, such as potato chips in conventional packets.

<table>
<thead>
<tr>
<th>Gas mixture composition in % (examples)</th>
<th>O₂</th>
<th>CO₂</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready-made meal</td>
<td>0</td>
<td>30–60</td>
<td>40–70</td>
</tr>
<tr>
<td>Pasta/Pizza</td>
<td>0</td>
<td>30–60</td>
<td>40–70</td>
</tr>
<tr>
<td>Sandwiches</td>
<td>0</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

WINE

Gases or gas mixtures are often used to protect wine in the different phases of its production process and to retain the quality of the product. They are mainly used to avoid contact with oxygen and prevent microbial deterioration. The tank headspace is replaced with an inert gas or a gas mixture, for example of CO₂, N₂ or Ar. The composition of the gases is chosen according to the type of wine.

<table>
<thead>
<tr>
<th>Gas mixture composition in % (examples)</th>
<th>O₂</th>
<th>CO₂</th>
<th>N₂</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>White wine / Rosé</td>
<td>0</td>
<td>20</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>White wine / Rosé</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>Red wine</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

COFFEE

As a dried product, coffee is relatively immune to spoilage by microorganisms. However, due to its fatty acid content, the product may turn rancid as a result of oxidation. To prevent this, coffee is packaged to exclude oxygen. Instead, a modified atmosphere comprising pure nitrogen is frequently used in coffee bags or capsules.

<table>
<thead>
<tr>
<th>Gas mixture composition in % (examples)</th>
<th>O₂</th>
<th>CO₂</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
CONTROLLED QUALITY OFFERS PEACE OF MIND!

ISO 22000 approval for food safety
If you master and control your modified atmosphere packaging process, you’ll protect the quality of your products in a safe and appealing food package. WITT gives you complete and effective support for your MAP quality assurance.

As a solution provider we offer high quality products for every part of the packaging process, including gas mixers, gas analyzers, leak detectors and ambient air monitors. WITT offers modern MAP solutions from a single source – certified according to ISO 22000 food safety standards.

Rely on the highest level of technical expertise with MAP gas technology by WITT – for optimal process safety and perfect food quality.

The illustration of the packaging process shows where WITT products provide quality and security.

› GAS MIXER AND GAS FLOW CONTROL SYSTEMS
1 KM-Series
2 MG-Series
3 KD 500-1A

› GAS ANALYZERS
4 OXYBABY® O₂/CO₂
5 PA O₂/CO₂
6 MAPY O₂/CO₂/CO/N₂O/He/C₂H₄

› LEAK DETECTION SYSTEMS
7 LEAK-MASTER® EASY
8 LEAK-MASTER® PRO
9A LEAK-MASTER® MAPMAX (Leak detection for single packages)
9B LEAK-MASTER® MAPMAX (secondary packaging, e.g. cartons, E2 boxes)

› AMBIENT AIR MONITORING
10 RLA-Series

Please see the following pages for product descriptions, including technical features and benefits.

A FLOW PACK MACHINE
B VACUUM PACKAGING MACHINE
GAS MIXERS AND METERERS

In the packaging process the air inside the package is replaced by a gas or a gas mixture. Typically, gas mixers are used to create these mixtures. MAP gas mixers by WITT provide controlled gas quality and safety in your packaging process – for germfree food preservation. But above all they offer great flexibility to the user. At the push of a button, different mixtures can be produced quickly on one packaging line, depending on the requirements of the product. WITT offers gas mixing and metering systems for all packaging machines used in the food industry: vacuum packaging, thermo forming, flow pack or chamber packaging machines. The gas mixing systems are adjusted to your specific product type and processing with only basic installation requirements.
APPLICATION
Electronic flow control system for modified atmosphere packaging (MAP) to suit flow pack machines in the food industry and for room atmospheres, e.g. for the storage of fruit and vegetables. Total control of the residual O₂ in the package.

FEATURES ➔ YOUR BENEFITS
• Integrated O₂ analysis ➔ Reliability by continuous control of the O₂ concentration
• Electronic control of gas flow to sensor ➔ Optimal process reliability by self-control
• Threshold limit control with alarm relay contacts ➔ Direct alarm reaction avoids defective goods (by stopping the packaging machine)
• Integrated pressure control ➔ Protection against pressure fluctuations in the gas supply
• Splash-proof and robust stainless steel housing ➔ Easy to clean and hygienic
• Interfaces for documentation and remote transfer of settings and measured values ➔ Customer-oriented quality documentation

OPTIONS
• GAS CONTROL CENTER Software for data processing
• Integrated printer for data documentation
• Separate printer for data documentation
• Zirconia sensor for O₂ measurement

Product features may differ according to version
GAS ANALYZERS

Gas analyzers are essential for quality control in the MAP process. Gas analysis can be done continuously during the packaging process or after as a sample test. For continuous analysis, a gas analyzer module is integrated into the gas mixing system where it monitors the correct composition of the gas mixture. In sample testing, a key element of quality control for any company working with modified atmospheres, a sample is taken from the package via a needle. Equipped with the most modern sensors, WITT gas analyzers are extremely precise and fast. And with a minimal gas volume requirement for testing, they’re suitable for packages of all sizes, including those with a small head-space or a very low volume of gas inside the package. For total quality assurance, all data is logged and can be archived for complete documentation.

OXYBABY®

APPLICATION

Cordless hand held Gas Analyzer for checking modified atmosphere packaging (MAP). The ideal instrument for portable, fast and accurate sample tests at the packaging machine, in stores or in laboratories.

FEATURES → YOUR BENEFITS

• Minimal sample gas requirement (approx. 2 ml)
 → Ideal instrument for all package sizes
• Fast measurement
 → Results within max. 6 seconds
• O₂ value is displayed in 0.01% steps
 → Oxygen can be controlled maximum precisely
• Ergonomic design
 → Genuine one hand operation, plug and play
• Large illuminated graphic-text-display
 → Easy to read. All information at a glance
• Integrated needle cover
 → User protection
• Integrated data logger
 → Storage of the last 500 measurements
• Specific product names
 → Practical classification of the measured values
• Flow Control with alarm function
 → Prevention of incorrect results
• USB port
 → Comfortable connection to PC
• Multilingual menu guide

OPTIONS

• Integrated barcode-reader
• Bluetooth
• OBCC Software for data processing
• Separate printer via Bluetooth for result documentation
• Device for headspace analysis in cans/bottles
• P version (for pressurized sample gas)

ISO 22000 approval for food safety
PA

O₂/CO₂

APPLICATION
Compact Gas Analyzer for checking and/or monitoring modified atmosphere packaging (MAP). For continuous analysis (in-line) as well as intermittent sampling via a needle at the packaging machine, in stores or in laboratories.

FEATURES ➔ YOUR BENEFITS
- Minimal sample gas requirement
 ➔ Ideal instrument for all package sizes
- Threshold limit control with alarm relay contacts
 ➔ Direct alarm reaction avoids defective goods
 (by stopping the packaging machine)
- Large illuminated graphic-text-display
 ➔ Easy to read. All information at a glance
- Zirconia sensor for O₂ measurement possible
 ➔ Fast, precise measurement
- Integrated data logger
 ➔ Storage of the last 500 measurements
- Specific product names
 ➔ Practical classification of the measured values
- USB port
 ➔ Comfortable connection to PC
- Continuous analysis or sample testing
 ➔ Flexible usage
- Flow control with alarm function
 ➔ Prevention of incorrect results
- Multilingual menu guide

OPTIONS
- OBCC Software for data processing
- Separate printer for result documentation
- Connection plugs
- Different versions available:
 continuous analysis, sample testing and
 P version (for pressurized sample gas)

MAPY

O₂/CO₂/CO/N₂O/He/C₂H₄

APPLICATION
Premium Multifunctional Gas Analyzer for checking and/or monitoring modified atmosphere packaging (MAP). For continuous analysis (in-line) and also intermittent sampling via a needle at the packaging machine, in stores or in laboratories.

FEATURES ➔ YOUR BENEFITS
See PA features, plus:
- Large, clear color touch screen
 ➔ Optimal information and easy to operate
- User management for up to 60 users
 ➔ Personalization of measurements
- Administration of up to 1000 products
 ➔ Individual classification of results and limits
- Auto run of the sample hold measurement
 ➔ For productivity and comfort
- Data transfer via USB-stick or Ethernet connection
 ➔ Customer-oriented quality documentation
- Flow Control with alarm function
 ➔ High measuring accuracy
- Automatic checking
 ➔ High process safety
- Pressure compensation
 ➔ Reliable measuring results
- Electrochemical, Zirconia or Paramagnetic sensor for O₂
 ➔ The best measuring principle to suit the application

OPTIONS
- GAS CONTROL CENTER Software for data processing
- Different versions available:
 continuous analysis, sample testing and
 P version (for pressurized sample gas)
- Barcode reader
- Fully automatic calibration
- Special version for higher inlet pressures
- 19” rack version
LEAK DETECTION

Modified atmospheres can only benefit your product if the protective gas remains inside the package – it must be fully leak tight. Give a freshness guarantee to retailers and consumers and use package leak detection to your competitive advantage. Prevent needless returns, loss of prestige, legal consequences and loss of customers by checking the leak tightness of your packages. WITT offers certified quality systems for the leak testing of all kinds of food packaging – with modified atmospheres as well as vacuum packaging. To optimize your quality assurance, you can choose between solutions for sample or in-line testing – based on CO₂ or a water bubble test. WITT leak detection systems reliably detect even the smallest of leaks, and you can digitally log all test results to document proven safety for your customers.

LEAK-MASTER® EASY

APPLICATION
Leak detection "bubble test" for packages. LEAK-MASTER® EASY features detection of even the smallest leaks without the need for trace gases.

FEATURES ➔ YOUR BENEFITS
• No trace gas required in package
 ➔ Usable without modified atmosphere (MAP)
• No electrical connections, operation using compressed air
 ➔ Easy installation and operation
• Visual test
 ➔ Localization of leak
• Testing of vacuum packages possible
 ➔ One system for all kinds of packages
• Easy to use
 ➔ No special skills required
• Low maintenance
 ➔ Time saving and cost effective
• Perspex housing
 ➔ Easy to clean

OPTIONS
• Different chamber sizes
• Available for vacuum packages
• Available for altitude simulation test
• Control unit PLUS: portable controller with various predefined measurement programs; also for result documentation

ISO 22000 approval for food safety
APPLICATION
Leak detection system for packages containing CO₂. LEAK-MASTER® features non-destructive testing for the smallest of leaks without the need for costly helium.

FEATURES ➔ YOUR BENEFITS
- Non-destructive testing
 ➔ Products remain undamaged and dry for further processing
- Large and clearly arranged touch screen
 ➔ Optimal information and easy handling, no special skills required
- User administration
 ➔ Personalization of measurements
- Data storage for over 6,000 measurements
 ➔ For high measurement frequencies
- Data transmission via Ethernet or WLAN
 ➔ Customer orientated quality documentation
- CO₂-based
 ➔ No costly helium required
- Stainless steel housing
 ➔ Robust and easy to clean
- Various chamber sizes
 ➔ Testing of single packages, cartons or E2 boxes possible
- Barcode reader (optional)
 ➔ Avoiding operator errors and enhancing productivity
- Multilingual menu control
- Separate PC software
 ➔ For documentation of test results

OPTIONS
- Various chamber sizes
- Documentation software
- GAS CONTROL CENTER
- Barcode reader IP 65
- W-LAN (WIFI)

APPLICATION
In-line micro-leak detection system for packages containing CO₂. MAPMAX features non-destructive detection of the smallest of leaks directly from the packaging line – and without the need for costly helium.

FEATURES ➔ YOUR BENEFITS
See LEAK-MASTER® features, plus:
- Fully automatic leak detection
 ➔ Avoiding operating errors
- Various chamber sizes
 ➔ Testing of single packages, cartons or E2 boxes possible
- High operating speed (max 15 cycles/min)
 ➔ High productivity of packaging line
- 100% automatic control of all packages
 ➔ No leaking packages are delivered to the customer – no costly returns

OPTIONS
- Various chamber sizes
- Reject system
- Documentation software
- GAS CONTROL CENTER
- Barcode reader IP 65
- W-LAN (WIFI)

Also available:
MAPMAX compact, with significantly reduced dimensions

Product features may differ according to version
AMBIENT AIR MONITORING

With WITT gas monitoring systems for ambient air, you protect your employees and make the use of gases such as carbon dioxide safer. CO₂ is odorless and may accumulate unnoticed in closed rooms and replace the oxygen in the air. A concentration of 0.3 percent carbon dioxide in ambient air can be a health hazard. The allowed maximum concentration at the workplace is 0.5 percent. At five percent headache and dizziness may occur; at eight percent and beyond, unconsciousness or even death. WITT’s RLA gas monitors continuously monitor the concentration of the respective gas in ambient air and activate an acoustic and visual alarm when individually definable limits are exceeded – simply effective. Controlled atmospheres are not just used in packaging but also for ripening control in special ripening chambers with the help of ethylene. By using a gas monitor from WITT’s RLA series, the ambient atmosphere can be monitored.

ISO 22000 approval for food safety

GAS MONITORING RLA

APPLICATION
Gas monitoring system for the detection of oxygen (O₂), carbon dioxide (CO₂) and other gases

FEATURES → YOUR BENEFITS
- 3 alarm limits adjustable within the measuring range
 → Individually adjustable alarm limits
- Triple-digit display
 → Permanent visual control
- Connections for alarm easily accessible on front
 → Easy installation
- Continuous self monitoring
 → High process safety
- Separate control panel and transmitter
 → Flexible installation for highest safety
- Up to 16 channels
 → Monitoring of large areas

OPTIONS
- Flow adapter for sensor check and calibration
WITT – NO. 1 IN MAP

WITT-Gasetechnik is a manufacturer of gas-related equipment that meets the highest quality standards. As a specialist in Modified Atmosphere Packaging (MAP), WITT was able to place the first production gas mixers for vacuum packaging machines on the market in 1977. Today, as a world market leader, WITT offers gas mixers, meterers and analyzers for all types of packaging machines in the food industry, as well as package leak detectors and ambient air monitors. WITT products are manufactured exclusively in Germany. Through its subsidiary companies and partners, the family business now operates worldwide with approx. 200 employees. Modern production processes with a high degree of vertical integration are a precondition for achieving the highest standards of products – with a long service life. A comprehensive quality management system guarantees consistent results so that everything leaving the factory meets the highest levels of safety and quality. As a manufacturer, WITT is certified according to ISO 22000 for food safety. Rely on German quality and worldwide support – rely on WITT.

WE MEET CUSTOMER NEEDS – YOUR CUSTOMIZED MAP SOLUTION

You haven't found something suitable in our product range? No problem: we manufacture your custom product on demand. Step by step we will develop your special solution – custom-tailored to your needs. Talk to us about your requirements!

Tel. +1 770 664 4447
www.wittgas.us
witt-usa@wittgas.com
OUR PRODUCT RANGE

GAS CONTROL EQUIPMENT
Gas mixing systems
Gas metering systems
Gas analyzers
Leak detection systems
Gas pressure vessels
Engineering of customized systems

GAS SAFETY EQUIPMENT
Flashback arrestors
Non-return valves / check valves
Quick couplers
Safety relief valves
Stainless steel devices
Gas filters
Pressure regulators
Outlet points
Lance holders
Ball valves
Automatic hose reels
Test equipment
Accessories
Customized safety equipment

What are your requirements?
Please contact us.
Tel. +1 770 664 4447 | witt-usa@wittgas.com