GAS MIXER KM 1000/1500-FLOW MAP

Gas mixing systems for 2 or 3 defined gases, designed for packaging using a protective atmosphere in the food industry.

Applicable for all types of packaging machines; whether vacuum, thermoforming, pillow bags or manually-sealed compartments.

The KM-FLOW uses electronic mass flow controllers (MFC) instead of conventional proportional valves for mixing gases.

Combined with an analyser results a maximization of the packaging quality accompanied by minimization of the gas consumption. This efficient workflow can be ideally realized with MFC.

Capacity range 10 up to 500 Nl/min for each gas line. Ensures a constant, accurate mixture when large or very small volumes are needed.

Benefits
- simple to operate via Touch-Screen
- freely programmable gas mixtures can be selected at the press of a button or by bar code scanner
- simplified analysis of results by digital data bus
- optimized gas consumption helps to reduce costs, cause user definable gas quantity for each different product (only in combination with an analyser)
- low maintenance
- easy to read display
- data transfer via USB port
- administration of product names for individual positioning
- measured data storage
- user level with different access authorisation
- up to 3 mixers cascadable. One unit with display and others as black-box realized

High Process Reliability
- data log
- permanent control of the O₂-concentration
- electronic control of the sample gas, alarm signals are given if the set limits are exceeded and a potential free contact operates to e.g. auto-stop your machine to avoid quality problems
- lockable transparent door for protection of settings (option)
- independent of pressure fluctuations in the gas supply

Maximum Hygiene
- splash-proof, robust stainless steel housing
- smooth and easy to clean surface

Options
- software GASCONTROL CENTER for recording of results (see separate data sheet)
- integrated data logger
- measuring results data transfer via Ethernet
- bar code scanner for product names selection

Other models, options and accessories available on request.

Please identify the individual gases at the time of enquiring!

Picture shows the version with analyser

KM17.1 - E01/E8 subject to change
GAS MIXER KM 1000/1500-FLOW MAP

Type
KM 1000-2 FLOW MAP, KM 1500-3 FLOW MAP

Gases
N₂, CO₂, O₂

others gases and applications see data sheet KM17.2

Accuracy
±1.5% of current value plus
±0.3% of final value

Repeatability
±0.1% of final value

Gas inlet pressures
max. 10 bar

Gas outlet pressure
min. 0.5 bar less than the inlet pressure

Output
O₂: max. 500 Nl/min
CO₂: max. 500 Nl/min
N₂: max. 500 Nl/min

Temperatures (gas/environment)
0 – 40 °C (+32 °F to +104 °F)

Gas connections
G 1/2 with cone seat, WITTFIX OD 10 mm

Alarm contacts
2 potential free contacts for min. and max. settings O₂

Interfaces
USB by memory stick for product data
RJ45 Ethernet FTP-Server for product data, flow values, software update

Housing
stainless steel, splash proof (with door)

Weight
approx. 35 kg

Dimensions (HxWxD)
approx. 325 x 480 x 500 mm (12.80 x 18.90 x 19.69 inches)

without connections and door

Voltage
230 V AC, 110 V AC, 24 V DC

Power consumption
230 V AC / 1.0 A

Approvals
Company certified according to ISO 9001 and DIN EN ISO 22000
CE-marked according to:
- EMC 2014/30/EU
- Low Voltage Directive 2014/35/EU
for food-grade gases according to:
- EIGA IGC Doc 13/12/E: Oxygen Pipeline and Piping Systems

Flow (in Nl/min) in relation to CO₂ and 1 gas line

<table>
<thead>
<tr>
<th>Min. inlet pressure in barg (max. 10 bar)</th>
<th>outlet pressure in barg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Flow (in Nl/min) in relation to O₂ and 1 gas line

<table>
<thead>
<tr>
<th>Min. inlet pressure in barg (max. 10 bar)</th>
<th>outlet pressure in barg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Flow (in Nl/min) in relation to 50% CO₂ / 50% O₂ and 2 gas lines

<table>
<thead>
<tr>
<th>Min. inlet pressure in barg (max. 10 bar)</th>
<th>outlet pressure in barg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

For detailed flow values, please refer to the table above.