FLASHBACK ARRESTORS

Every Arrestor 100% tested.

The best Flashback Arrestors in the world
- a large surface area flame arrestor [FA] of stainless steel construction extinguishes any dangerous flashback
- after any flashback or reverse gas flow, a pressure sensitive cut-off valve [PV] immediately cuts off the gas supply and prevents dangerous further work
- a red signal lever indicates the operation of the pressure sensitive cut-off valve
- the resetting of the arrestor by the lever allows the user to resume safe work immediately after fixing the cause of the flashback or the reverse gas flow
- a temperature sensitive cut-off valve [TV] extinguishes sustained flashbacks long before the internal temperature of the arrestors reaches a dangerous level
- a spring loaded non-return valve [NV] prevents slow or sudden reverse gas flow from forming explosive mixtures in the gas supply
- a filter at the gas inlet protects the arrestor against dirt contamination, extending the service life
- a pressure relief valve [RV] vents excessive pressure and soot into the atmosphere, protecting the hose from bursting and the flame arrestor from clogging up, thus maintaining the flow rate

Operation / Usage
- Super Flashback Arrestors are used to protect gas cylinders and pipeline outlet points (hoses and any equipment) against dangerous reverse gas flow and flashbacks
- WITT Flashback Arrestors may be mounted in any position/orientation
- only one piece of equipment may be connected to a single Flashback Arrestor
- the maximum ambient/working temperature is 70 °C / 158 °F

Maintenance
- annual testing of the non-return valve, body leak tightness and flow capacity is recommended
- WITT is happy to supply special test equipment
- Flashback Arrestors are only to be serviced by the manufacturer; the dirt filter may be replaced by competent staff

Approvals
Company certified according to ISO 9001
Cleaned for Oxygen Service according to:
- EIGA IGC Doc 13/12/E: Oxygen Pipeline and Piping Systems

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Super 78 + Super 90*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylene (A)</td>
<td>1.5</td>
<td>G 3/8 LH</td>
<td>125-010</td>
<td>125-029</td>
<td>650 (S 78)</td>
<td>Brass</td>
<td>Elastomer</td>
</tr>
<tr>
<td>Ethylene (E)</td>
<td>4.0</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPG (P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gas/ Methane (M)</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen (H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Town gas (C)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen (O)</td>
<td>10.0</td>
<td>G 1/4 RH</td>
<td>125-016</td>
<td>125-030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressed air (D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Super 66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylene (A)</td>
<td>2.0</td>
<td>G 3/8 LH</td>
<td>125-002</td>
<td></td>
<td>1,104</td>
<td>Brass</td>
<td>Elastomer</td>
</tr>
<tr>
<td>Ethylene (E)</td>
<td>3.0</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPG (P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gas/ Methane (M)</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen (H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Town gas (C)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen (O)</td>
<td>10.0</td>
<td>G 1/4 RH</td>
<td>125-006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressed air (D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* no Certification BAM

Other connections available upon request
FLASHBACK ARRESTORS

Super 78 and Super 90

Conversion factors:
Acetylene x 1.04
Butane x 0.68
Ethylene x 1.02
Natural Gas x 1.25
Methane x 1.33
Propane x 0.80
Oxygen x 0.95
Town gas x 1.54
Hydrogen x 3.75

Super 66

Conversion factors:
Acetylene x 1.04
Butane x 0.68
Ethylene x 1.02
Natural Gas x 1.25
Methane x 1.33
Propane x 0.80
Oxygen x 0.95
Town gas x 1.54
Hydrogen x 3.75

Super 66/78/90

Flow diagram for air (20 °C / 68 °F)

Inlet pressure: P_v [bar] Opening pressure: 10 mbar

Standard volume flow [Nm³/h] (1013 mbar / 14.7 psi, 0 °C / 32 °F)

Filter
Signal lever
Pressure sensitive cut-off valve
Gas non-return valve
Flame arrester
Temperature sensitive cut-off valve
Explosion pressure relief valve (not included in model Super 90)