

WITT gas filter LE6 protects downstream components and systems from contamination and condensates.

Its size allows high flows with low pressure drop and compliance with the EIGA, AIGA and CGA maximum velocity limits.

Benefits

- ultra fine filtering out of mechanical impurities through bronze filter inserts
- broad range of applications compatible with many technical gases
- change of filter possible while installed due to user-friendly design
- high flowrate owing to flow-maximising design (4 500 Nm³/h for O₂ at inlet pressure 30 bar and pressure drop 50 mbar)
- condensates can be collected and removed using condensate drain
- optimized design for easy installation and maintenance
- extended flange connections for the simplest possible mounting of this heavy unit
- connections on the inlet and outlet side to allow for pressure monitoring
- reliable filtering performance increases service life of downstream components and equipment

Operation / Usage

- · Gas filters are designed for installation in pipelines
- must be installed vertically

Maintenance

- condensates should be drained at regular intervals
- filter inserts must be checked regularly and replaced if necessary

Options

• electronic differential pressure monitoring

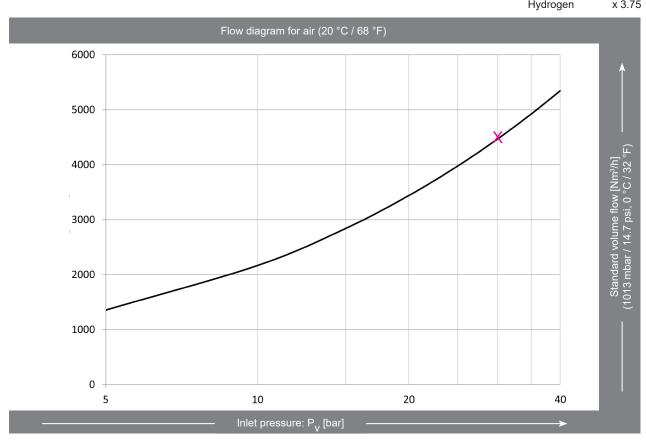
Approvals

Company certified according to ISO 9001 and PED 2014/68/EU Module G

CE-marked according to: - PED 2014/68/EU

Designed for Oxygen Service in accordance with EIGA 13/20, CGA G-4.4 and AIGA 021/20: Oxygen Pipeline and Piping Systems

Model	Max. working pressure [bar]		Material	Temperature	Weight [kg]	Connection	Filter -Mesh	Order-No.
LE6	Carbon dioxide (CO2) Argon (Ar) Helium (He) Compressed air (D) Hydrogen (H) Natural gas (M) Nitrogen (N) LPG (P) Oxygen (O)	25.0 40.0 30.0	Housing – Stainless Steel Filter – Bronze Seals – Elastomer	-40 °C up to +100 °C Oxygen (O) +60 °C	193	inlet / outlet Flange both sides DN100 / PN40 pressure monitoring G 3/8 F	15 µm	078-001
Replacement filter inserts of bronze								FI-LE6


Other connections available upon request

GAS FILTER LE6

LE6 at ∆p = 50 mbar

Conversion facto	are:						
Butane	x 0.68						
Natural gas	x 1.25						
Carbon dioxide	x 0.81						
Methane	x 1.33						
Propane	x 0.80						
Oxygen	x 0.95						
Town gas	x 1.54						
Hydrogen	x 3.75						

www.wittgas.com

Δp max. = 1 bar in continuous operation

Let us know your operating conditions! We will be pleased to calculate your individual pressure drop.

EIGA	AIGA	
OXYGEN PIPELINE AND PIPING SYSTEMS Doc 13/20 Revision of Dis 13/12	OXYGEN PIPELINE AND PIPING SYSTEMS AGA 021/20 Recision of AEA 22/172	CGA G-4.4-2020 OXYGEN PIPELINE AND PIPING SYSTEMS SIXTH EDITION
EUROPEAN INSUSTINAL GASES ASSOCIATION ASSOL AURORECEGANTISAS - 4 - O CORPUSES IN SZCZI / VIII - 7 - VIII / VIIII - 1 Book (ADQUELS - 1 - 1000)	Asia Industrial Gaser Association N2 Xearus Tex 423 Store Externe Segregation of a second second second second second second Mercel (Industry and Second Sec	CGA