FLASHBACK ARRESTORS

stainless steel

WITT Flashback Arrestors for reliable protection against dangerous reverse gas flow and flashbacks according to DIN EN ISO 5175-1.

Every Arrestor 100% tested.

The best Flashback Arrestors in the world

Benefits

- a large surface area flame arrestor [FA] of stainless steel construction extinguishes any dangerous flashback
- a temperature sensitive cut-off valve [TV] extinguishes sustained flashbacks long before the internal temperature of the arrestors reaches a dangerous level
- a spring loaded non-return valve [NV] prevents slow or sudden reverse gas flow forming explosive mixtures in the gas supply
- a filter at the gas inlet protects the arrestor against dirt contamination, extending the service life (RF53N-ES)

Operation / Usage

- Flashback Arrestors are used to protect gas cylinders and pipeline outlet points (hoses and any equipment) against dangerous reverse gas flow (RF53N-ES) and flashbacks
- without non-return valve (F53N-ES) for lower working pressures i.e. before and after analysers
- ideal for use with corrosive gases in the chemical industry, process technology or in the laboratory area
- WITT Flashback Arrestors may be mounted in any position / orientation
- the maximum ambient/working temperature is 70 °C / 158 °F

Maintenance

- annual testing of the non-return valve, body leak tightness and flow capacity is recommended
- WITT is happy to supply special test equipment
- Flashback Arrestors are only to be serviced by the manufacturer. The dirt filter may be replaced by competent staff

Approvals

- Company certified according to ISO 9001
- Cleaned for Oxygen Service according to:
 - EIGA IGC Doc 13/12/E: Oxygen Pipeline and Piping Systems
- Other connections available upon request

Note: The Models RF53N and F53N are suitable for fuel gas and oxygen.
FLASHBACK ARRESTORS
stainless steel

RF53N-ES
145-262
145-024
145-142

Conversion factors:
Acetylene x 1.04
Butane x 0.68
Natural gas x 1.25
Methane x 1.33
Propane x 0.80
Oxygen x 0.95
Town gas x 1.54
Hydrogen x 3.75

Flow diagram for air (20 °C / 68 °F)

F53N-ES
145-227

Conversion factors:
Acetylene x 1.04
Butane x 0.68
Natural gas x 1.25
Methane x 1.33
Propane x 0.80
Oxygen x 0.95
Town gas x 1.54
Hydrogen x 3.75

Flow diagram for air (20 °C / 68 °F)

RF53N/H-ES
145-107
145-121

Conversion factors:
Acetylene x 1.04
Butane x 0.68
Natural gas x 1.25
Methane x 1.33
Propane x 0.80
Oxygen x 0.95
Town gas x 1.54
Hydrogen x 3.75

Flow diagram for air (20 °C / 68 °F)